MINISTÉRIO DA AGRICULTURA E ABASTECIMENTO SECRETÁRIA DE DEFESA AGROPECUÁRIA INSTRUÇÃO NORMATIVA Nº 04, DE 05/02/2001

O SECRETÁRIO DE DEFESA AGROPECUÁRIA DO MINISTÉRIO DA AGRICULTURA E ABASTECIMENTO, no uso da atribuição que lhe confere o art. 83, inciso IV, do Regimento Interno desta Secretária, aprovado pela Portaria Ministerial nº 574, de 8 de dezembro de 1998, e o que consta do Processo nº 21000.000328/2000-12, resolve;

Art. 1º Aprovar a Metodologia de Análise da Razão Isotópica 13 C/12C em Produtos e subprodutos das Plantas do Ciclo Fotossintético C3 e C4, em conformidade ao anexo desta instrução normativa. Art. 2º Esta instrução normativa entra em vigor na data de sua publicação.

LUIZ CARLOS DE OLIVEIRA

ANEXO

METODOLOGIA DE ANÁLISE DA RAZÃO ISOTÓPICA 13 C/12C EM PRODUTOS E SUBPRODUTOS DAS PLANTAS DO CICLO FOTOSSINTÉTICO C3 e C4.

- 1. Método: Espectrometria de massa de razão isotópica. IRMS
- 2. Principio: Por meio da diluição dos isótopos estáveis do carbono, pode-se mensurar quantitativamente a adição do açúcar ou do álcool de cana-de-açúcar no vinho, derivado da uva e do vinho, fermentado alcoólico, fermentado acético e outros subprodutos das plantas do ciclo fotossintético C3, uma vez que, a razão 13C/12C é isotopicamente diferente nos produtos e derivados das plantas do ciclo fotossintético C4, da ordem de quatorze per mil. O erro nas análises das variações naturais da razão 13C/12C é inferior ou igual a 0,2%. O padrão internacional adotado para a análise em delta per mil, é o fóssil Bellemnitella americana, da formação Pee Dee do Sul da Carolina, USA, abreviadamente, PDB.
- 3. Material
- 3.1 Equipamentos
- Espectrômetro de massa de baixa resolução com sistema duplo de entrada ou similar.
- Linha de combustão sob fluxo continuo de oxigênio.
- Linha de alto vácuo, para a destilação da amostra sob ação criogênica e à vácuo.
- 3.2 Vidrarias e outros materiais:
- Cápsula de estanho de 8x5 mm;
- Garrafa Dewar de 665 ml;
- Pipeta de vidro graduada de 2 ml;
- Micropipeta de 100 ml;
- Nitrogênio liquido;
- Gelo seco;
- Oxigênio 2-8;
- Nitrogênio;
- Álcool.
- 4. Procedimento
- Destilação. Destilar lentamente, 1,5 ml da amostra sob a ação criogênica (-169°C) e à vácuo (10-2 mbar). Ver anexo.
- Combustão. Proceder a combustão (950° C) do destilado (100ml na cápsula de estanho) sob fluxo continuo de oxigênio (1ml/minuto).

- Análise. Proceder a análise isotópica da razão 13C/12C do dióxido de carbono da amostra contra o padrão internacional PDB, no espectrômetro de massa. Os resultados de sua réplica da amostra serão expressos em delta per mil (d%o) com desvio padrão inferior ou igual a 0,2%o.
- Percentual de pureza (%C3). Determinar os valores isotópicos da razão 13C/12C em delta per mil dos produtos puros, destilados, de derivados de C3 C4 para as retas padrões da diluição isotópica. 5. Retas padrões
- 5.1 Vinhos e derivados
- Padrões de vinho. Mistura proporcional de vinhos puros, destilados, das diversas variedades nacionais: d%o 13C, PDB (vinho) = (-27,86+/- 0,20)%o
- Padrões de açúcar de cana-de-açúcar; d%o13C, PDB (açúcar)=(-11,46+/- 0,20)%o
- Reta padrão:
- d%o13C, PDB (vinho, açúcar) = -11,46 0,163867 (x); R2 = 99,9%, na qual (x) reflete o grau de pureza (%C3) da amostra analisada.
- 5.2 Fermentados de maçã e derivados
- Padrão de fermentado de maça. Mistura proporcional de fermentados de maça puros, destilados, das diversas variedades nacionais;

d%o13 C, PDB (maça) = (-27.42 + /- 0.02)%o

- Padrão de açúcar de cana-de-açúcar.

d%o13 C, PDB (açúcar) = (-11,46 +/- 0,20)%o

- Reta padrão:

d%o13 C, PDB (maça, açúcar) = -11,46 - 0,1596(x); R2 = 100%, na qual (x) reflete o grau de pureza (%C3) da amostra analisada.

5.3 Fermentado de arroz e derivados

- Padrão de fermentado de arroz. Valor médio da mistura de vinagres de arroz puros, destilados, das diversas variedades nacionais;

d%o13 C, PDB (arroz) = (-27,60+/-0,18)%o

- Padrão de vinagre de álcool. Valor médio da mistura de vinagres de álcool puro, destilados, das diversas variedades nacionais;

d%o13 C, PDB (vinagre de álcool) = (-13,28+/- 0,14)%o

- Reta padrão

d%o13C, PDB (arroz,vinagre de álcool) = -13,14 - 0,1428(x); R2 = 99,8%, na qual, (x) reflete o grau de pureza (%C3) da amostra analisada.

5.4 Agrin

- Agrin, marca fantasia de uma mistura composta por 90% de fermentado acético de álcool e 10% de fermentado acético de vinho tinto ou branco, puro, com acidez acética volátil mínima de 4,0 g/100ml.
- Padrão de vinagre de álcool. Valor médio da mistura de vinagres de álcool puros, destilados, das diversas variedades nacionais;

d%o13 C, PDB (vinagre de álcool) = (-13,28+/- 0,14)%o

- Padrão de vinagre de vinho. Valor médio da mistura de vinagres de vinhos, destilados, das diversas variedades nacionais;

d%o13 C, PDB (vinagre de vinho) = (-21,74+/- 0,10)%o

- Reta Padrão

d%o13 C, PDB (Agrin) = -13,1486 - 0,141589(x); R2 = 99,4%, na qual, (x) reflete grau de pureza (%C3) da amostra analisada.

6. Cálculo de Critério de Análise

O valor do enriquecimento isotópico relativo (delta per mil) da amostra versus o padrão

internacional PDB obtém-se pela expressão;

d%o13 C, (amostra PDB) = [(R amostra/R padrão)-1]. 103 , na qual R é a razão isotópica 13C/12C da amostra e do padrão.

No mínimo duas repetições por amostra são processadas, ou tantas quantas forem necessárias, com o intuito do desvio padrão da média ser inferior ou igual a 0,2%. Este erro total, inerente ao próprio método, é reflexo da somatória dos erros individuais da destilação, combustão e análise isotópica.

A primeira e a segunda análise do Agrin a 10% forneceram os seguintes valores em delta per mil: (-14,66%o) e (-14,46%o), com valor médio e desvio padrão de (-14,56 +/- 0,10)%. Inserindo o maior e o menor valor desta média na reta do agrin, obtém-se o grau de pureza (%C3) no intervalo de 9% a 11% de C3.

7. Limitação do método

A desvantagem do uso da técnica da diluição isotópica dos isótopos estáveis do carbono por espectrometria de massa é a não confiabilidade na mensuração quantitativa entre duas fontes primárias, pertencentes ao mesmo grupo de plantas e subprodutos do ciclo fotossintético C3. Entretanto esta técnica também pode ser aplicada a outros derivados e outros subprodutos do ciclo fotossintético C3 quando adulterados com subprodutos do ciclo fotossintéticos C4, principalmente açúcar e álcool de cana-de-açúcar ou milho.

8. Referências Bibliográficas

BARRIE, A, DAVIES, J.E., PARK, A.J., WORKMAN, C.T., Continuous-flow stable isotope analysis for biologists. Spectroscopy. V.4, n.7, 1990.

BARRIE, A., PROSSER, S.J. Automated analysis of-light-element stable isotopes by isotope ratio mass spectrometry. In: mass spectrometry of soils. Part 1. Pg. 1-46. Edited by Thomas W. Boutton and Shinichi Yamasaki, Marcel Dekker, Inc.1996.

BOUTTON, T.W. Stable carbon isotope ratios of natural materials: In: Sample preparation and mass spectrometric analysis. In: Carbon isotope techniques. Chaper 10. P. 155-171. Edited by David C. Coleman and Brian Fry. Academic Press, Inc. 1991.

DUCATTI, C., SALATTI, E., MATSUI, E. Método de análise da razão 13C/12C em matéria orgânica e das razões 13C/12C e 18O/16O em carbonatos. An. Acad. Brasil. Cienc., (1979) 51(2), pp 275-286. DUCATTI, C., MATSUI, E., SALATI, E. Fundamentos teóricos dos fatores de correção, para análise das variações relativas das razões 13C/12C e 18O/16O, por espectrometria de massa. Energ. Nucl. Agric., Piracicaba, 4(1): 41-58, jan/jun, 1982.

DUCATTI, C. Isótopos estáveis ambientais. Apostila mimeografada 138 pgs, UNESP, Campus de Botucatu, 2000.

EHLERINGER, J.R., HALL., A.E., FARGUHAR, G.D. Stable isotopes and plant carbon-water relations. Academic Press, Inc. 1993, 555pgs.

HILLARIRE-MARCEL, G. Isotopes and food. In: Handbook of environmental isotope geochemistry Chapter 12:507-548. edited by P. Fritz and J. Ch. Fontes. V.2. The Terrestrial Environment, B. Elsevier, Tokio, 1986.

Inter-Laboratory Study abount the determination of d13 C in wine ethanols. O.I.V., fv 1051; 2452/180397.

KOZIET, J., PICHLMAYER, F., ROSSMANN, A. Carbon, oxygen and hydrogen isotopic intercomparison of fruit and vegetable juices. In: Reference and intercomparison materials for stable isotopes of light elements. P. 75-80. IAEA-TEC DOC – 825.1995.

LICATI, F. Isótopos estáveis do carbono (12C/13C) em plantas dos ciclos bioquímicos C3 e C4 Monografia. Instituto de Biociências, Campus de Botucatu, UNESP, 65 pgs. 1997.

MERIN, J., MINQUES, S. Mesure du rapport isotopique 13C/12C du gaz carbonique des vins mousseux et des vins gazeifies. O. I. V., F.V. 1039, 2426/200297.

PELLA, E., COLOMBO, B. Study of carbon, hydrogen and nitrogen determination by combustión – gas chromatography. Mikro chimica Acta [Wine], 697-719, 1973.

PISSINATO, L., MARTINELLI, L.A, VICTÓRIA, R.L., CAMARGO, P.B. Stable carbon isotopic analysis and the botanical origin of ethanol in brasilian brandies. Food research International 32(1999), 665-668. REMAUD, G., GUILLOU, C., VALLET, C., & MARTIN, G.L. A couplet NMR and MS isotopic method for the authentication of natural vinegars. Fresenius Journal of Analytical Chemistry. (1992), 342:457-461.

ANEXO DESTILAÇÃO A VÁCUO E CRIOGÊNICA

Fase 1. Adição de 1,5 ml da amostra e limpeza do ar do sistema com gás N2.

Fase 2. Amostra a temperatura ambiente (H2O) e trap de nitrogênio liquido (-196°C). Vácuo a 10-2 mbar